

Document: password_problems.pdf Web Site: www.articsoft.com

Problems with passwords

Overview

Most current password systems for the Internet are flawed. Designs that were
almost acceptable 10 and 15 years ago have not been updated. Instead of moving
to integrating authentication services under a cryptographically sound approach the
IT industry has continued to proliferate multiple incompatible systems. Users are
increasingly exposed by suppliers who feel no pressure to do anything better. There
are parallels with the situation where web site page design methods are increasingly
being rejected by security software because they represent known security
weaknesses that have been exploited by hackers and viruses.

Introduction

The approach to using a log on identifier and password goes back to the early days
implementing security on mainframe systems. This kind of security was introduced
as soon as it was possible for people outside the computer room to be able to use
computer resources. Up until then access was controlled by physical security.

As we rolled terminals out into user areas, so the ID/password concept was rolled
out also. Initially these were held in a file that was not protected, but after some
splendid security breaches on Unix systems in particular these files were encrypted
to make an attacker work harder to get anywhere.

Passwords were short (6 characters). They were short because the ID would be
disabled if the password was entered three times incorrectly. They were also short
so you didn’t have much to type and would likely get it right. They were short
because it gave you less to remember.

Initial design considerations

Experience with short passwords soon threw up a series of flaws for user
implementation. In no particular order these included:

• using a ‘standard’ word such as boss, master, doall, passwd;
• using a dictionary word or the name of the business;
• using repeating letters or numerals (AAAAAA, 111111 and so on).

Six characters were also found to be just about short enough for someone to watch
and remember whilst the user typed them in.

To counter the users attempts to make their lives easier, systems were invented
that changed passwords on a regular basis (say monthly, and even daily for critical
passwords), compelled the new password to be different, and checked it against a
list of previously used passwords. More sophisticated systems enforced rules
requiring passwords to be structured using letters and digits in non-repeating
patterns.

These approaches more or less forced users to break other security rules and write
down their passwords – particularly if they had several to ‘remember’. (I recall a
‘classic’ case where a user was being expected to remember more than 20
passwords, some of which were the only way to access encrypted documents.
Naturally they did not listen to the ideas of regular change and remembering
everything.)

 Email: info@articsoft.com Page 1 of 4

Document: password_problems.pdf Web Site: www.articsoft.com

The security people continued to ignore the problems faced by human users.
ID/password systems were not integrated following the argument that a compromise
of one system must not compromise all systems. (This was then ignored in the
attempts to find a system that would securely connect a user to all their applications
with just one password.) Applications designers have continued to implement their
own ideas about user identification - or none at all by making the assumption that
magic would somehow occur outside their control.

There continues therefore to be a central dichotomy between those who want short
passwords that are forever changing and those who want one password that a user
can remember, but it cannot be short and it must be memorable.

Technical design problems

Early password systems restricted user choice to upper case and numerals, thus
giving the attacker a much reduced space of attack (the permutations and
combinations of valid input data). Later systems used upper and lower case and this
improved things a bit in terms of the number of attempts the attacker had to make
before he could find it by ‘brute force’ (still not all eight bits of each byte since not
everything is on the keyboard).

Later systems converted the password into a ‘hash’ or one way encrypted field so
that it could not be readily reverse engineered by an attacker. Unfortunately the
hashing systems were not necessarily very effective, and even when they were, the
amount of space they give you is not that large and the attacker can choose any
password that gives them a valid hash, not just the one the user selected. Please
note that when passwords are used on their own (that is without a separate Identity
field), the attack space is reduced by the number of passwords that have actually
been issued, since for the attacker any valid password is good enough.

Even later some subtle systems combined the user id and the password into a hash.
This created the potential for more space, although the length of both parts and the
way that they were combined was critical to the quality of the result.

Network systems and services, and the introduction of the PC as a networked device
as well as a stand-alone computer, together created the idea that it must be
possible to have infinite retries at getting the password right. (In the case of the
PC, concern was focused upon the problem of having its owner get locked out with
no way to recover the situation. Therefore, some systems had physical password
reset buttons to get round this problem.) The attacker was being given a massive
advantage!

The Internet, built for resilience and information sharing, included the idea of an
ID/password, but did not provide encryption to protect the password and allowed
infinite retries to get it right. As a result, passwords are usually transmitted
unprotected, and may be sent with every page that needs access to a password
protected area as well as allowing the attacker all the time the site is up to try and
crack it.

 Email: info@articsoft.com Page 2 of 4

Document: password_problems.pdf Web Site: www.articsoft.com

Potential routes forwards

The biggest hurdle to overcome is the ability of a user to hit more than six
consecutive keys reliably, given that they cannot ‘see’ the results of what they are
doing. (Actually, this is not new. Anyone with a Remington typewriter No 3 and
before would know that the type basket on those models hit the paper directly under
the roller, not on the front of the roller, and the user had to lift the roller to see what
they had typed.)

Of course a user needs a bit of practice in order to get a longer password right.
Constant change makes for bad typing. Using a much longer password, say 30 or so
character positions, may not be guaranteed to generate what the cryptologists call
entropy, but it has a good chance. If it is combined with using hash algorithms that
generate much larger spaces (say SHA-1 512) then the attack space will still be
large compared with current results.

A long password should also be harder to crack with short dictionary attacks and
more resistant to brute force attacks, because the time to create either the
password or the hash becomes significant. This may have a lot to recommend itself.
Long passwords are also resistant to being captured by others by mere observation
(except when keystroke capturing methods are in use) because there is too much
now for the attacker to remember, no matter how often then observe. (Perhaps
videos will become more popular in ‘public places’.

But how do you educate users into using passwords successfully?

The first thing to remember is that the length must be proportionate to the overall
security requirement. If a ‘three strikes and you’re out’ system combined with a
token of almost any kind is in use you can live with a 4-digit PIN. If there are
multiple systems then a single long password could be used as a system enabler for
all services.

Choosing long passwords is not the daunting prospect that so destroys choosing
short passwords. Natural language is now to be preferred since it must be
memorable. But the expression of the natural language must be left to the
capricious nature of the user.

By way of some examples of longer passwords, one could consider the following:

“Table!house*”, “Knight(soil)” or “Dem0n**manager”. Other examples that could
work include, “1066andallthat”, “Hangthe****donkey” or “Now is the time forall
men”. This last one is a quotation, but it’s still hard to guess or attack, especially if
you don’t know where the spaces are! These kinds of passwords are proof against
any dictionary attack, and, provided they are not changed often, users are more
likely to choose something difficult and unique. Another handy feature is that they
are slightly harder to share with friends since there is so much more to remember.

Never forget the real purpose

The password, as we use it today, is more often than not the ‘secret’ that unlocks
systems capabilities or grants authorizations (including access control). In future
services it will be used to authorize cryptographic secrets, most likely held in
software, and then later in hardware. These ‘keystores’ may hold various secrets,
perhaps even including other passwords that are transparent to the user. Where
infinite retries are possible, the use of short passwords will represent a significant,
and avoidable weakness which designers may one day be called to account for.

 Email: info@articsoft.com Page 3 of 4

Document: password_problems.pdf Web Site: www.articsoft.com Email: info@articsoft.com Page 4 of 4

Ultimately, the real purpose of a security system is to try and make the user’s life
easy whilst making the attacker’s life difficult. Systems that ignore the user are
going to fail with the very community they are supposed to serve.

Whenever users cannot manage the systems they are given an advantage is being
given to the attacker because they will exploit those aspects of the system first.
Similarly, a poorly designed system will fail and will compromise the very users it is
supposed to protect. Poor design is much harder to fix than bad coding or errors in
implementation.

	Problems with passwords
	Overview
	Introduction
	Initial design considerations
	Technical design problems
	Potential routes forwards
	But how do you educate users into using passwords successfully?
	Never forget the real purpose

